mailto: info@meas.ch - http://www.meas.ch

(c) ROWA-Soft GmbH (SNr01100A)

10.Dez 2016 08:03:38

Einzelbauteilnachweis (Wärmedurchgangs- und Dampfdiffusionsberechnung) gem. DIN 4108 und DIN EN ISO 6946

02.Jul 2015

Projekt Kurzbeschreibung: RVE-TK/200 68mm

Bauvorhaben

Bearbeiter :

Objektstandort Baujahr 2015

Straße/Hausnr. :

Gemarkung : Flurstücknummer: ----

Hauseigentümer/Bauherr

Name/Firma : Straße/Hausnr. : Plz/Ort :

Telefon / Fax :

Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
Luftübergang Warmseite Rsi 0.1 PVC Hart 2 2-k PUR Klebstoff 3 XPS/P 17-40mm, >750mm 4 2-k PUR Klebstoff 5 TK/200 6 2-k PUR Klebstoff 7 XPS/P 17-40mm, >750mm 8 2-k PUR Klebstoff 9 PVC Hart Luftübergang Kaltseite Rse 0.04	D D D D D D	1450.0 1400.0 30.0 1400.0 200.0 1400.0 30.0 1400.0 1450.0	2.00 0.20 19.00 0.20 26.00 0.20 19.00 0.20 2.00	0.200 0.032 0.200 0.043 0.200 0.032 0.200	0.001 0.594 0.001 0.605 0.001 0.594 0.001	20000 / 50000 200 / 600 100 / 160 200 / 600 200 / 300 200 / 600 100 / 160 200 / 600 20000 / 50000	Warmseite Kaltseite Kaltseite
Dicke = 68.80 mm	FIGewicht	= 13.3 kg/	$R = 1.88 \text{ m}^2\text{K/W}$		U-W	/ert = 0.487 W/m²K	

Wärmedurchgangsberechnung

Berechnete Daten:

 $\label{eq:warmedurchlass} \mbox{Wärmedurchlass} \mbox{widerstand R} \mbox{ 1.82 [m²K/W]} \\ \mbox{Wärmedurchgangswiderstand R}_{\mbox{T}} \mbox{ 1.99 [m²K/W]}$

Wärmedurchgangskoeffizient U-Wert 0.50 [W/m²K]

Entstehung von Oberflächenkondensat

Bei den derzeitigen Randbedingungen beträgt die rel. Luftfeuchte an der Oberfläche Warmseite:

56.5%

Bei gegebener Temperatur von 20.0 °C auf der Warmseite tritt Oberflächenkondensat ab:

88.5 % Raumluftfeuchte auf.

RVE-TK/200 68mm 10.Dez 2016 08:03:38

Randbedingungen der Dampfdiffusion

Warmseite Kaltseite Tauperiode: Lufttemperatur 20.0 °C -10.0 °C relative Feuchte 50.0 % 80.0 % 1440 Stunden Dauer der Tauperiode Verdunstungsperiode: 12.0 °C 12.0 °C Lufttemperatur relative Feuchte 70.0 % 70.0 % Dauer der Verdunstungsperiode 2160 Stunden

Dachtemperatur ----- °C

das Bauteil wird als Wand berechnet.

Falluntersuchung nach DIN 4108 ergab: FALL D

Aufbau ist OK. Es verbleibt kein Wasser im Bauteil

Ausfallpunkt Warmseite 49.120 [m] (μ *d) 279.1 [Pa] an Schichtgrenze 7/8 Ausfallpunkt Kaltseite 49.240 [m] (μ *d) 278.7 [Pa] an Schichtgrenze 8/9

Nr.	Material	DIN	μ1/μ2	μ
7	XPS/P 17-40mm, >750mm	000	μ1	100
8	2-k PUR Klebstoff		μ2	600
9	PVC Hart		μ2	50000

mailto: info@meas.ch - http://www.meas.ch

(c) ROWA-Soft GmbH (SNr01100A)

10.Dez 2016 08:18:17

Einzelbauteilnachweis (Wärmedurchgangs- und Dampfdiffusionsberechnung) gem. DIN 4108 und DIN EN ISO 6946

22.Nov 2013

Projekt Kurzbeschreibung: RV-TK/dB 68mm

Bauvorhaben :

Bearbeiter :

Objektstandort Baujahr 2013

Straße/Hausnr. :
Plz/Ort :

Gemarkung : Flurstücknummer: ----

Hauseigentümer/Bauherr Name/Firma :

Straße/Hausnr. :

Plz/Ort : Telefon / Fax :

Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
Luftübergang Warmseite Rsi 0.11 1 PVC Hart 2 2-k PUR Klebstoff 3 XPS/D-X DIN EN 13164 4 2-k PUR Klebstoff 5 TK/200 6 2-k PUR Klebstoff 7 Spezial-Schwerfolie 8 2-k PUR Klebstoff 9 XPS/D-X DIN EN 13164 10 2-k PUR Klebstoff 11 PVC Hart Luftübergang Kaltseite Rse 0.04		1450.0 1400.0 30.0 1400.0 200.0 1400.0 2400.0 1400.0 1400.0 1450.0	2.0 0.2 19.0 0.2 26.0 0.2 4.0 0.2 15.0 0.2	0 0.200 0 0.029 0 0.200 0 0.43 0 0.200 0 0.200 0 0.200 0 0.029 0 0.200	0.001 0.655 0.001 0.605 0.001 0.020 0.001 0.517 0.001	100 / 160 200 / 600 200 / 300 200 / 600 80000 200 / 600 100 / 160	Warmseite Kaltseite
Dicke = 69.00 mm	FIGewicht	= 23.0 kg/	/m²	R = 1.8	33 m²K/W	U-W	/ert = 0.501 W/m²K

Wärmedurchgangsberechnung

Berechnete Daten:

 $\label{eq:warmedurchlass} \begin{tabular}{ll} W\"{a}rmedurchlasswiderstand RT \\ \begin{tabular}{ll} 1.83 \ [m^2 K/W] \\ 2.00 \ [m^2 K/W] \\ \end{tabular}$

Wärmedurchgangskoeffizient U-Wert 0.50 [W/m²K]

Entstehung von Oberflächenkondensat

Bei den derzeitigen Randbedingungen beträgt die rel. Luftfeuchte an der Oberfläche Warmseite:

56.5%

Bei gegebener Temperatur von 20.0 °C auf der Warmseite tritt Oberflächenkondensat ab:

88.6 % Raumluftfeuchte auf.

RV-TK/dB 68mm 10.Dez 2016 08:18:17

Randbedingungen der Dampfdiffusion

Warmseite Kaltseite Tauperiode: 20.0 °C -10.0 °C Lufttemperatur relative Feuchte 50.0 % 80.0 % 1440 Stunden Dauer der Tauperiode Verdunstungsperiode: 12.0 °C 12.0 °C Lufttemperatur relative Feuchte 70.0 % 70.0 %

Dauer der Verdunstungsperiode 2160 Stunden

Dachtemperatur ----- °C

das Bauteil wird als Wand berechnet.

Falluntersuchung nach DIN 4108 ergab: FALL C

Tauwasser in der Tauperiode: (1440h) $0.012+0.000 = 0.012 \text{ kg/m}^2$ mögliche Verdunstungsmenge: (2160h) $0.012+0.000 = 0.012 \text{ kg/m}^2$ verbleibende Restmenge 0.000 kg/m^2

Aufbau ist OK. Es verbleibt kein Wasser im Bauteil

Ausfallpunkt Warmseite $47.220 \text{ [m]} (\mu^* d)$ 558.3 [Pa] an Schichtgrenze 6/7 Ausfallpunkt Kaltseite $369.860 \text{ [m]} (\mu^* d)$ 278.7 [Pa] an Schichtgrenze 10/11

Nr.	Material	DIN	μ1/μ2	μ
6	2-k PUR Klebstoff	0000	μ1	200
7	Spezial-Schwerfolie		μ1	80000
10	2-k PUR Klebstoff		μ2	600
11	PVC Hart		μ2	50000

(c) ROWA-Soft GmbH (SNr01100A)

15.Sep 2016 12:36:03

Einzelbauteilnachweis (Wärmedurchgangs- und Dampfdiffusionsberechnung) gem. DIN 4108 und DIN EN ISO 6946

14.Sep 2016

Projekt Kurzbeschreibung: RVE-TK 70mm

Bauvorhaben

Bearbeiter

Objektstandort Baujahr 2016

Straße/Hausnr. Plz/Ort

Gemarkung Flurstücknummer: -----

Hauseigentümer/Bauherr Name/Firma

Straße/Hausnr. Plz/Ort

Telefon / Fax

Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
Luftübergang Warmseite Rsi 1 PVC Hart 2 2-k PUR Klebstoff 3 XPS/P 17-40mm, >750mm 4 2-k PUR Klebstoff 5 TK/200 6 2-k PUR Klebstoff 7 XPS/P 17-40mm, >750mm 8 2-k PUR Klebstoff 9 PVC Hart Luftübergang Kaltseite Rse 0		1450.0 1400.0 30.0 1400.0 200.0 1400.0 30.0 1400.0 1450.0	0.20 28.00 0.20 26.00 0.20 12.00	0 0.200 0 0.032 0 0.200 0 0.043 0 0.200 0 0.032 0 0.200	0.001 0.875 0.001 0.605 0.001 0.375 0.001	200 / 600 200 / 300 200 / 600 100 / 160	Warmseite Kaltseite
Dicke = 70.80 mm	FlGewicht	= 13.3 kg	/m²	R = 1.8	38 m²K/W	U-W	/ert = 0.487 W/m²K

Kommentar zum Bauteil

Schalldämmwert: 33dB (Geprüft wurde der Elementaufbau in 84mm).

Wärmedurchgangsberechnung

Berechnete Daten:

1.88 [m²K/W] Wärmedurchlaßwiderstand R Wärmedurchgangswiderstand RT 2.05 [m²K/W]

Wärmedurchgangskoeffizient U-Wert 0.49 [W/m2K]

Entstehung von Oberflächenkondensat

Bei den derzeitigen Randbedingungen beträgt die rel. Luftfeuchte an der Oberfläche Warmseite:

56.3%

Bei gegebener Temperatur von 20.0 °C auf der Warmseite tritt Oberflächenkondensat ab:

88.9 % Raumluftfeuchte auf.

RVE-TK 70mm 15.Sep 2016 12:36:03

Randbedingungen der Dampfdiffusion

Warmseite Kaltseite Tauperiode: 20.0 °C -10.0 °C Lufttemperatur relative Feuchte 50.0 % 80.0 % 1440 Stunden Dauer der Tauperiode Verdunstungsperiode: 12.0 °C 12.0 °C Lufttemperatur relative Feuchte 70.0 % 70.0 % Dauer der Verdunstungsperiode 2160 Stunden

Dachtemperatur ----- °C

das Bauteil wird als Wand berechnet.

Falluntersuchung nach DIN 4108 ergab: FALL D

Aufbau ist OK. Es verbleibt kein Wasser im Bauteil

Ausfallpunkt Warmseite 49.320 [m] (μ *d) 278.5 [Pa] an Schichtgrenze 7/8 Ausfallpunkt Kaltseite 49.440 [m] (μ *d) 278.1 [Pa] an Schichtgrenze 8/9

Nr.	Material	DIN	μ1/μ2	μ
7	XPS/P 17-40mm, >750mm	000	μ1	100
8	2-k PUR Klebstoff		μ2	600
9	PVC Hart		μ2	50000

mailto: info@meas.ch - http://www.meas.ch

(c) ROWA-Soft GmbH (SNr01100A)

14.Sep 2016 14:55:52

Einzelbauteilnachweis (Wärmedurchgangs- und Dampfdiffusionsberechnung) gem. DIN 4108 und DIN EN ISO 6946

14.Sep 2016

Projekt Kurzbeschreibung: RVE-TK/dB 70mm

Bauvorhaben :

Bearbeiter :

Objektstandort Baujahr 2016

Straße/Hausnr. :

Gemarkung : Flurstücknummer: ----

Hauseigentümer/Bauherr Name/Firma :

Straße/Hausnr. : Plz/Ort :

Telefon / Fax

Dichte Dicke λ R Diff. - Wid. [W/mK] $[m^2K/W]$ Material [kg/m³] s [mm] Luftübergang Warmseite Rsi 0.13 1 PVC Hart D 1450.0 2.00 0.013 20000 / 50000 0.160 2 2-k PUR Klebstoff 3 XPS/P 17-40mm, >750mm 0.001 D 1400.0 0.20 0.200 200 / 600 D 30.0 24.00 0.032 0.750 100 / 160 4 2-k PUR Klebstoff D 1400.0 0.20 0.200 0.001 200 / 600 5 Spezial-Schwerfolie D 2400.0 0.200 0.020 80000 4.00 6 2-k PUR Klebstoff D 1400.0 0.20 0.200 0.001 200 / 600 D 200.0 200 / 300 TK/200 26.00 0.043 0.605 8 2-k PUR Klebstoff D 1400.0 0.20 0.200 0.001 200 / 600 0.032 9 XPS/P 17-40mm, >750mm D 30.0 12.00 0.375 100 / 160

10 2-k PUR Klebstoff D 1400.0 0.20 0.200 0.001 200 / 600 11 PVC Hart 0.013 20000 / 50000 D 1450.0 2.00 0.160 Luftübergang Kaltseite Rse 0.04 FI.-Gewicht = 23.1 kg/m² Dicke = 71.00 mm $R = 1.78 \text{ m}^2\text{K/W}$ $U-Wert = 0.513 W/m^2K$

Kommentar zum Bauteil

Schalldämmwert: 37dB (Geprüft wurde der Elementaufbau in 84mm).

Wärmedurchgangsberechnung

Berechnete Daten:

 $\label{eq:warmedurchlass} W \mbox{armedurchlass} \mbox{widerstand R} \mbox{R} \mbox{1.78 } \mbox{[m²K/W]} \mbox{W} \mbox{armedurchgangswiderstand R} \mbox{T} \mbox{1.95 } \mbox{[m²K/W]}$

Wärmedurchgangskoeffizient U-Wert 0.51 [W/m²K]

Entstehung von Oberflächenkondensat

Bei den derzeitigen Randbedingungen beträgt die rel. Luftfeuchte an der Oberfläche Warmseite:

56.6%

Bei gegebener Temperatur von 20.0 °C auf der Warmseite

tritt Oberflächenkondensat ab:

88.3 % Raumluftfeuchte auf.

RVE-TK/dB 70mm 14.Sep 2016 14:55:52

Randbedingungen der Dampfdiffusion

Warmseite Kaltseite Tauperiode: 20.0 °C -10.0 °C Lufttemperatur relative Feuchte 50.0 % 80.0 % 1440 Stunden Dauer der Tauperiode Verdunstungsperiode:

Lufttemperatur

12.0 °C 12.0 °C relative Feuchte 70.0 % 70.0 %

Dauer der Verdunstungsperiode 2160 Stunden

---- °C Dachtemperatur

das Bauteil wird als Wand berechnet.

Falluntersuchung nach DIN 4108 ergab: FALL C

(1440h) Tauwasser in der Tauperiode: 0.003+0.001 =0.004 kg/m² 0.020 kg/m² mögliche Verdunstungsmenge: (2160h) 0.000 kg/m² verbleibende Restmenge

Aufbau ist OK. Es verbleibt kein Wasser im Bauteil

Ausfallpunkt Warmseite 951.6 [Pa] an Schichtgrenze 4/5 42.480 [m] (µ*d) Ausfallpunkt Kaltseite 372.560 [m] (µ*d) 279.1 [Pa] an Schichtgrenze 10/11

Nr.	Material	DIN	μ1/μ2	μ
4	2-k PUR Klebstoff	0 0 0	μ1	200
5	Spezial-Schwerfolie		μ1	80000
10	2-k PUR Klebstoff		μ2	600
11	PVC Hart		μ2	50000

mailto: info@meas.ch - http://www.meas.ch

(c) ROWA-Soft GmbH (SNr01100A)

10.Dez 2016 07:56:25

Einzelbauteilnachweis (Wärmedurchgangs- und Dampfdiffusionsberechnung) gem. DIN 4108 und DIN EN ISO 6946

03.Feb 2015

Projekt Kurzbeschreibung: RVE-TK/200 74mm

Bauvorhaben

Bearbeiter

Objektstandort Baujahr 2015

Straße/Hausnr. Plz/Ort

Gemarkung Flurstücknummer: -----

Hauseigentümer/Bauherr

Name/Firma Straße/Hausnr.

Plz/Ort Telefon / Fax

Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
Luftübergang Warmseite Rsi 1 PVC Hart 2 2-k PUR Klebstoff 3 XPS/D-X DIN EN 13164 4 2-k PUR Klebstoff 5 TK/200 6 2-k PUR Klebstoff 7 XPS/D-X DIN EN 13164 8 2-k PUR Klebstoff 9 PVC Hart Luftübergang Kaltseite Rse	D D D D D D	1450.0 1400.0 30.0 1400.0 200.0 1400.0 30.0 1400.0 1450.0	18.0 0.2 26.0	0 0.200 0 0.029 0 0.200 0 0.043 0 0.200 0 0.029 0 0.200	0.001 0.621 0.001 0.605 0.001 0.897 0.001	200 / 600	Warmseite Kaltseite
Dicke = 74.80 mm FIGewicht =		= 13.4 kg	/m²	R = 2.′	15 m²K/W	U-W	/ert = 0.431 W/m ² K

Wärmedurchgangsberechnung

Berechnete Daten:

Wärmedurchlaßwiderstand R 2.15 [m²K/W] Wärmedurchgangswiderstand RT 2.32 [m2K/W]

Wärmedurchgangskoeffizient U-Wert 0.43 [W/m2K]

Entstehung von Oberflächenkondensat

Bei den derzeitigen Randbedingungen beträgt die rel. Luftfeuchte an der Oberfläche Warmseite:

55.5%

Bei gegebener Temperatur von 20.0 °C auf der Warmseite tritt Oberflächenkondensat ab:

90.1 % Raumluftfeuchte auf.

RVE-TK/200 74mm 10.Dez 2016 07:56:25

Randbedingungen der Dampfdiffusion

Warmseite Kaltseite Tauperiode: Lufttemperatur 20.0 °C -10.0 °C relative Feuchte 50.0 % 80.0 % 1440 Stunden Dauer der Tauperiode Verdunstungsperiode: 12.0 °C 12.0 °C Lufttemperatur relative Feuchte 70.0 % 70.0 % Dauer der Verdunstungsperiode 2160 Stunden

Dachtemperatur ----- °C

das Bauteil wird als Wand berechnet.

Falluntersuchung nach DIN 4108 ergab: FALL D

Aufbau ist OK. Es verbleibt kein Wasser im Bauteil

Ausfallpunkt Warmseite 49.720 [m] (μ *d) 276.3 [Pa] an Schichtgrenze 7/8 Ausfallpunkt Kaltseite 49.840 [m] (μ *d) 276.0 [Pa] an Schichtgrenze 8/9

١	۱r.	Material	DIN	μ1/μ2	μ
	8	XPS/D-X DIN EN 13164 2-k PUR Klebstoff PVC Hart	000	μ1 μ2 μ2	100 600 50000

mailto: info@meas.ch - http://www.meas.ch

(c) ROWA-Soft GmbH (SNr01100A)

10.Dez 2016 08:22:55

Einzelbauteilnachweis (Wärmedurchgangs- und Dampfdiffusionsberechnung) gem. DIN 4108 und DIN EN ISO 6946

14.Feb 2016

Projekt Kurzbeschreibung: RV-TK/dB 74mm

Bauvorhaben

Bearbeiter

Objektstandort Baujahr 2016

Straße/Hausnr. Plz/Ort

Gemarkung Flurstücknummer: -----

Hauseigentümer/Bauherr

Name/Firma Straße/Hausnr.

Plz/Ort Telefon / Fax

Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
Luftübergang Warmseite Rsi 1 PVC Hart 2 2-k PUR Klebstoff 3 XPS/D-X DIN EN 13164 4 2-k PUR Klebstoff 5 TK/200 6 2-k PUR Klebstoff 7 Spezial-Schwerfolie 8 2-k PUR Klebstoff 9 XPS/D-X DIN EN 13164 10 2-k PUR Klebstoff 11 PVC Hart Luftübergang Kaltseite Rse	D D D D D D	1450.0 1400.0 30.0 1400.0 200.0 1400.0 2400.0 1400.0 1400.0 1450.0	2.0 0.2 18.0 0.2 26.0 0.2 4.0 0.2 22.0 0.2	0 0.200 0 0.029 0 0.200 0 0.43 0 0.200 0 0.200 0 0.200 0 0.029 0 0.200	0.001 0.621 0.001 0.605 0.001 0.020 0.001 0.759 0.001	200 / 300 200 / 600 80000 200 / 600 100 / 160	Wamseite Kaltseite Kaltseite
Dicke = 75.00 mm FlGewicht = 23.2 kg/m ²		/m²	R = 2.0)3 m²K/W	U-W	/ert = 0.454 W/m²K	

Wärmedurchgangsberechnung

Berechnete Daten:

Wärmedurchlaßwiderstand R 2.03 [m²K/W] Wärmedurchgangswiderstand RT 2.20 [m²K/W]

Wärmedurchgangskoeffizient U-Wert 0.45 [W/m²K]

Entstehung von Oberflächenkondensat

Bei den derzeitigen Randbedingungen beträgt die rel. Luftfeuchte an der Oberfläche Warmseite:

55.8%

Bei gegebener Temperatur von 20.0 °C auf der Warmseite tritt Oberflächenkondensat ab:

89.6 % Raumluftfeuchte auf.

RV-TK/dB 74mm 10.Dez 2016 08:22:55

Randbedingungen der Dampfdiffusion

Warmseite Kaltseite Tauperiode: 20.0 °C -10.0 °C Lufttemperatur relative Feuchte 50.0 % 80.0 % 1440 Stunden Dauer der Tauperiode Verdunstungsperiode: 12.0 °C 12.0 °C Lufttemperatur relative Feuchte 70.0 % 70.0 %

Dauer der Verdunstungsperiode 2160 Stunden

Dachtemperatur ----- °C

das Bauteil wird als Wand berechnet.

Falluntersuchung nach DIN 4108 ergab: FALL C

Tauwasser in der Tauperiode: (1440h) $0.009+0.001 = 0.009 \text{ kg/m}^2$ mögliche Verdunstungsmenge: (2160h) $0.009+0.001 = 0.009 \text{ kg/m}^2$ verbleibende Restmenge 0.000 kg/m^2

Aufbau ist OK. Es verbleibt kein Wasser im Bauteil

Ausfallpunkt Warmseite 47.120 [m] (μ *d) 673.5 [Pa] an Schichtgrenze 6/7 Ausfallpunkt Kaltseite 370.880 [m] (μ *d) 276.8 [Pa] an Schichtgrenze 10/11

Nr.	Material	DIN	μ1/μ2	μ
	2-k PUR Klebstoff Spezial-Schwerfolie 2-k PUR Klebstoff PVC Hart	D D D	μ1 μ1 μ2 μ2	200 80000 600 50000

mailto: info@meas.ch - http://www.meas.ch

(c) ROWA-Soft GmbH (SNr01100A)

10.Dez 2016 08:01:12

Einzelbauteilnachweis (Wärmedurchgangs- und Dampfdiffusionsberechnung) gem. DIN 4108 und DIN EN ISO 6946

03.Feb 2015

Projekt Kurzbeschreibung: RVE-TK/200 76mm

Bauvorhaben :

Bearbeiter :

Objektstandort Baujahr 2015

Straße/Hausnr. :
Plz/Ort :

Gemarkung : Flurstücknummer: ----

Hauseigentümer/Bauherr

Name/Firma : Straße/Hausnr. :

Plz/Ort : Telefon / Fax :

Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
Luftübergang Warmseite Rsi 1 PVC Hart 2 2-k PUR Klebstoff 3 XPS/D-X DIN EN 13164 4 2-k PUR Klebstoff 5 TK/200 6 2-k PUR Klebstoff 7 XPS/D-X DIN EN 13164 8 2-k PUR Klebstoff 9 PVC Hart Luftübergang Kaltseite Rse 0.		1450.0 1400.0 30.0 1400.0 200.0 1400.0 30.0 1400.0 1450.0	2.00 0.20 18.00 0.20 26.00 0.20 28.00 0.20 2.00	0.200 0.029 0.200 0.043 0.200 0.029 0.200	0.001 0.621 0.001 0.605 0.001 0.966 0.001	200 / 600	Warmseite Kaltseite
Dicke = 76.80 mm	FIGewicht	= 13.5 kg	/m²	R = 2.2	22 m²K/W	U-W	/ert = 0.418 W/m²K

Wärmedurchgangsberechnung

Berechnete Daten:

 $\begin{array}{ll} \mbox{W\"{a}rmedurchla} \mbox{Swiderstand R} & 2.22 \ [\mbox{m}^2 \mbox{K/W}] \\ \mbox{W\"{a}rmedurchgangswiderstand R}_{\mbox{T}} & 2.39 \ [\mbox{m}^2 \mbox{K/W}] \end{array}$

Wärmedurchgangskoeffizient U-Wert 0.42 [W/m²K]

Entstehung von Oberflächenkondensat

Bei den derzeitigen Randbedingungen beträgt die rel. Luftfeuchte an der Oberfläche Warmseite:

55.3%

Bei gegebener Temperatur von 20.0 °C auf der Warmseite tritt Oberflächenkondensat ab:

90.4 % Raumluftfeuchte auf.

RVE-TK/200 76mm 10.Dez 2016 08:01:12

Randbedingungen der Dampfdiffusion

Warmseite Kaltseite Tauperiode: 20.0 °C -10.0 °C Lufttemperatur relative Feuchte 50.0 % 80.0 % 1440 Stunden Dauer der Tauperiode Verdunstungsperiode: 12.0 °C 12.0 °C Lufttemperatur relative Feuchte 70.0 % 70.0 % Dauer der Verdunstungsperiode 2160 Stunden

Dachtemperatur ----- °C

das Bauteil wird als Wand berechnet.

Falluntersuchung nach DIN 4108 ergab: FALL D

Aufbau ist OK. Es verbleibt kein Wasser im Bauteil

Ausfallpunkt Warmseite 49.920 [m] (μ *d) 275.8 [Pa] an Schichtgrenze 7/8 Ausfallpunkt Kaltseite 50.040 [m] (μ *d) 275.5 [Pa] an Schichtgrenze 8/9

Nr.	Material	DIN	μ1/μ2	μ
8	XPS/D-X DIN EN 13164 2-k PUR Klebstoff PVC Hart	000	μ1 μ2 μ2	100 600 50000

mailto: info@meas.ch - http://www.meas.ch

(c) ROWA-Soft GmbH (SNr01100A)

10.Dez 2016 08:25:22

Einzelbauteilnachweis (Wärmedurchgangs- und Dampfdiffusionsberechnung) gem. DIN 4108 und DIN EN ISO 6946

14.Feb 2016

Projekt Kurzbeschreibung: RV-TK/dB 76mm

Bauvorhaben

Bearbeiter :

Objektstandort Baujahr 2016

Straße/Hausnr. :
Plz/Ort :

Gemarkung : Flurstücknummer: ----

Hauseigentümer/Bauherr Name/Firma :

Name/Firma :
Straße/Hausnr. :
Plz/Ort

Plz/Ort : Telefon / Fax :

Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
Luftübergang Warmseite Rsi 0.1 1 PVC Hart 2 2-k PUR Klebstoff 3 XPS/D-X DIN EN 13164 4 2-k PUR Klebstoff 5 TK/200 6 2-k PUR Klebstoff 7 Spezial-Schwerfolie 8 2-k PUR Klebstoff 9 XPS/D-X DIN EN 13164 10 2-k PUR Klebstoff 11 PVC Hart Luftübergang Kaltseite Rse 0.04	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1450.0 1400.0 30.0 1400.0 200.0 1400.0 2400.0 1400.0 1400.0 1450.0	24.00	0.200 0.029 0.200 0.043 0.200 0.200 0.200 0.029 0.200	0.001 0.621 0.001 0.605 0.001 0.020 0.001 0.828 0.001	200 / 600 80000 200 / 600	Warmseite Kaltseite
Dicke = 77.00 mm	FlGewicht	= 23.3 kg/	/m²	R = 2.1	0 m ² K/W	U-W	/ert = 0.440 W/m ² K

Wärmedurchgangsberechnung

Berechnete Daten:

Wärmedurchlaßwiderstand R 2.10 [m²K/W] Wärmedurchgangswiderstand RT 2.27 [m²K/W]

Wärmedurchgangskoeffizient U-Wert 0.44 [W/m²K]

Entstehung von Oberflächenkondensat

Bei den derzeitigen Randbedingungen beträgt die rel. Luftfeuchte an der Oberfläche Warmseite:

55.6%

Bei gegebener Temperatur von 20.0 °C auf der Warmseite tritt Oberflächenkondensat ab:

89.9 % Raumluftfeuchte auf.

RV-TK/dB 76mm 10.Dez 2016 08:25:22

Randbedingungen der Dampfdiffusion

Warmseite Kaltseite Tauperiode: 20.0 °C -10.0 °C Lufttemperatur relative Feuchte 50.0 % 80.0 % 1440 Stunden Dauer der Tauperiode Verdunstungsperiode: 12.0 °C 12.0 °C Lufttemperatur relative Feuchte 70.0 % 70.0 % Dauer der Verdunstungsperiode 2160 Stunden

Dachtemperatur ----- °C

das Bauteil wird als Wand berechnet.

Falluntersuchung nach DIN 4108 ergab: FALL C

Tauwasser in der Tauperiode: (1440h) $0.008+0.001 = 0.009 \text{ kg/m}^2$ mögliche Verdunstungsmenge: (2160h) $0.008+0.001 = 0.009 \text{ kg/m}^2$ verbleibende Restmenge 0.000 kg/m^2

Aufbau ist OK. Es verbleibt kein Wasser im Bauteil

Ausfallpunkt Warmseite $47.120 \text{ [m]} (\mu^*\text{d})$ 701.5 [Pa] an Schichtgrenze 6/7 Ausfallpunkt Kaltseite $371.200 \text{ [m]} (\mu^*\text{d})$ 276.3 [Pa] an Schichtgrenze 10/11

Nr.	Material	DIN	μ1/μ2	μ
6	2-k PUR Klebstoff	0000	μ1	200
7	Spezial-Schwerfolie		μ1	80000
10	2-k PUR Klebstoff		μ2	600
11	PVC Hart		μ2	50000

mailto: info@meas.ch - http://www.meas.ch

(c) ROWA-Soft GmbH (SNr01100A)

10.Dez 2016 08:04:43

Einzelbauteilnachweis (Wärmedurchgangs- und Dampfdiffusionsberechnung) gem. DIN 4108 und DIN EN ISO 6946

03.Feb 2015

Projekt Kurzbeschreibung: RVE-TK/200 82mm

Bauvorhaben :

Bearbeiter :

Objektstandort Baujahr 2015

Straße/Hausnr. : Plz/Ort :

Gemarkung : Flurstücknummer: ----

Hauseigentümer/Bauherr Name/Firma : Straße/Hausnr. : Plz/Ort : Telefon / Fax :

Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
Luftübergang Warmseite Rsi 1 PVC Hart 2 2-k PUR Klebstoff 3 XPS/D-X DIN EN 13164 4 2-k PUR Klebstoff 5 TK/200 6 2-k PUR Klebstoff 7 XPS/D-X DIN EN 13164 8 2-k PUR Klebstoff 9 PVC Hart Luftübergang Kaltseite Rse	D D D D D D D	1450.0 1400.0 30.0 1400.0 200.0 1400.0 30.0 1400.0 1450.0	20.0 0.2 26.0 0.2 32.0	0.200 0.029 0.000 0.200 0.043 0.000 0.029 0.000 0.200	0.001 0.690 0.001 0.605 0.001 1.103 0.001	200 / 600 200 / 300 200 / 600	Warmseite Kaltseite
Dicke = 82.80 mm	FIGewicht	= 13.7 kg	/m²	R = 2.4	13 m²K/W	U-W	/ert = 0.385 W/m²K

Wärmedurchgangsberechnung

Berechnete Daten:

 $\begin{array}{ll} \mbox{W\"{a}rmedurchla} \mbox{Swiderstand R} & 2.43 \mbox{ [m2K/W]} \\ \mbox{W\"{a}rmedurchgangswiderstand R} \mbox{T} & 2.60 \mbox{ [m2K/W]} \\ \end{array}$

Wärmedurchgangskoeffizient U-Wert 0.39 [W/m²K]

Entstehung von Oberflächenkondensat

Bei den derzeitigen Randbedingungen beträgt die rel. Luftfeuchte an der Oberfläche Warmseite:

54.9%

Bei gegebener Temperatur von 20.0 °C auf der Warmseite tritt Oberflächenkondensat ab:

91.1 % Raumluftfeuchte auf.

RVE-TK/200 82mm 10.Dez 2016 08:04:43

Randbedingungen der Dampfdiffusion

Warmseite Kaltseite Tauperiode: 20.0 °C -10.0 °C Lufttemperatur relative Feuchte 50.0 % 80.0 % 1440 Stunden Dauer der Tauperiode Verdunstungsperiode: 12.0 °C 12.0 °C Lufttemperatur relative Feuchte 70.0 % 70.0 % Dauer der Verdunstungsperiode 2160 Stunden

Dachtemperatur ----- °C

das Bauteil wird als Wand berechnet.

Falluntersuchung nach DIN 4108 ergab: FALL D

Aufbau ist OK. Es verbleibt kein Wasser im Bauteil

Ausfallpunkt Warmseite 50.520 [m] (μ *d) 274.5 [Pa] an Schichtgrenze 7/8 Ausfallpunkt Kaltseite 50.640 [m] (μ *d) 274.2 [Pa] an Schichtgrenze 8/9

Nr.	Material	DIN	μ1/μ2	μ
8	XPS/D-X DIN EN 13164 2-k PUR Klebstoff PVC Hart	000	μ1 μ2 μ2	100 600 50000

mailto: info@meas.ch - http://www.meas.ch

(c) ROWA-Soft GmbH (SNr01100A)

10.Dez 2016 08:08:11

Einzelbauteilnachweis (Wärmedurchgangs- und Dampfdiffusionsberechnung) gem. DIN 4108 und DIN EN ISO 6946

03.Feb 2015

Projekt Kurzbeschreibung: RVE-TK/200/dB37 82mm

Bauvorhaben :

Bearbeiter :

Objektstandort Baujahr 2015

Straße/Hausnr. :
Plz/Ort :

Gemarkung : Flurstücknummer: ----

Hauseigentümer/Bauherr Name/Firma :

Straße/Hausnr. : Plz/Ort :

Telefon / Fax :

Dichte Dicke λ

Material [kg/m³] s [mm] [W/mK]

Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
Luftübergang Warmseite Rsi 1 PVC Hart 2 2-k PUR Klebstoff 3 XPS/D-X DIN EN 13164 4 2-k PUR Klebstoff 5 Spezial-Schwerfolie 6 2-k PUR Klebstoff 7 TK/200 8 2-k PUR Klebstoff 9 XPS/D-X DIN EN 13164 10 2-k PUR Klebstoff 11 PVC Hart Luftübergang Kaltseite Rse (D D D D D D D	1450.0 1400.0 30.0 1400.0 2400.0 1400.0 200.0 1400.0 1400.0 1450.0	2.00 0.20 20.00 0.20 4.00 0.20 26.00 0.20 28.00 0.20	0 0.200 0 0.029 0 0.200 0 0.200 0 0.200 0 0.043 0 0.200 0 0.029 0 0.200	0.001 0.690 0.001 0.020 0.001 0.605 0.001 0.966 0.001	100 / 160 200 / 600 80000 200 / 600 200 / 300 200 / 600 100 / 160	Wamseite Kaltseite
Dicke = 83.00 mm	FIGewicht	= 23.4 kg	/m²	R = 2.3	31 m²K/W	U-W	/ert = 0.403 W/m²K

Wärmedurchgangsberechnung

Berechnete Daten:

Wärmedurchlaßwiderstand R 2.31 [m²K/W] Wärmedurchgangswiderstand RT 2.48 [m²K/W]

Wärmedurchgangskoeffizient U-Wert 0.40 [W/m²K]

Entstehung von Oberflächenkondensat

Bei den derzeitigen Randbedingungen beträgt die rel. Luftfeuchte an der Oberfläche Warmseite:

55.1%

Bei gegebener Temperatur von 20.0 °C auf der Warmseite tritt Oberflächenkondensat ab:

90.7 % Raumluftfeuchte auf.

RVE-TK/200/dB37 82mm 10.Dez 2016 08:08:11

Randbedingungen der Dampfdiffusion

Warmseite Kaltseite Tauperiode: Lufttemperatur 20.0 °C -10.0 °C relative Feuchte 50.0 % 80.0 % 1440 Stunden Dauer der Tauperiode Verdunstungsperiode: 12.0 °C 12.0 °C Lufttemperatur relative Feuchte 70.0 % 70.0 % Dauer der Verdunstungsperiode 2160 Stunden

Dachtemperatur ----- °C

das Bauteil wird als Wand berechnet.

Falluntersuchung nach DIN 4108 ergab: FALL B

Aufbau ist OK. Es verbleibt kein Wasser im Bauteil

Ausfallpunkt 370.200[m] (µ*d) 274.9[Pa] an Schichtgrenze 10/11

Nr.	Material	DIN	μ1/μ2	μ
10	2-k PUR Klebstoff	D	μ1	200
11	PVC Hart	D	μ2	50000

(c) ROWA-Soft GmbH (SNr01100A)

15.Sep 2016 12:37:53

Einzelbauteilnachweis (Wärmedurchgangs- und Dampfdiffusionsberechnung) gem. DIN 4108 und DIN EN ISO 6946

14.Sep 2016

Projekt Kurzbeschreibung: RVE-TK 84mm

Bauvorhaben

Bearbeiter :

Objektstandort Baujahr 2016

Straße/Hausnr. : Plz/Ort :

Gemarkung : Flurstücknummer: ----

Hauseigentümer/Bauherr Name/Firma : Straße/Hausnr. : Plz/Ort : Telefon / Fax :

Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
Luftübergang Warmseite Rsi (1 PVC Hart 2 2-k PUR Klebstoff 3 XPS/P 17-40mm, >750mm 4 2-k PUR Klebstoff 5 TK/200 6 2-k PUR Klebstoff 7 XPS/P 17-40mm, >750mm 8 2-k PUR Klebstoff 9 PVC Hart Luftübergang Kaltseite Rse 0.	D D D D D	1450.0 1400.0 30.0 1400.0 200.0 1400.0 30.0 1400.0 1450.0	20.0 0.2 26.0 0.2 34.0	0 0.200 0 0.032 0 0.200 0 0.043 0 0.200 0 0.032 0 0.200	0.001 0.625 0.001 0.605 0.001 1.063 0.001	200 / 600 200 / 300 200 / 600	Warmseite Kaltseite
Dicke = 84.80 mm	FIGewicht	= 13.7 kg	/m²	R = 2.3	32 m²K/W	U-W	/ert = 0.401 W/m²K

Kommentar zum Bauteil

33dB (Geprüft wurde der Elementaufbau in 84mm).

Wärmedurchgangsberechnung

Berechnete Daten:

Wärmedurchlaßwiderstand R 2.32 [m²K/W] Wärmedurchgangswiderstand RT 2.49 [m²K/W]

Wärmedurchgangskoeffizient U-Wert 0.40 [W/m²K]

Entstehung von Oberflächenkondensat

Bei den derzeitigen Randbedingungen beträgt die rel. Luftfeuchte an der Oberfläche Warmseite:

55.1%

Bei gegebener Temperatur von 20.0 °C auf der Warmseite tritt Oberflächenkondensat ab:

90.7 % Raumluftfeuchte auf.

RVE-TK 84mm 15.Sep 2016 12:37:53

Randbedingungen der Dampfdiffusion

Warmseite Kaltseite Tauperiode: 20.0 °C -10.0 °C Lufttemperatur relative Feuchte 50.0 % 80.0 % 1440 Stunden Dauer der Tauperiode Verdunstungsperiode: 12.0 °C 12.0 °C Lufttemperatur relative Feuchte 70.0 % 70.0 % Dauer der Verdunstungsperiode 2160 Stunden

Dachtemperatur ----- °C

das Bauteil wird als Wand berechnet.

Falluntersuchung nach DIN 4108 ergab: FALL D

Aufbau ist OK. Es verbleibt kein Wasser im Bauteil

Ausfallpunkt Warmseite 50.720 [m] (μ *d) 275.1 [Pa] an Schichtgrenze 7/8 Ausfallpunkt Kaltseite 50.840 [m] (μ *d) 274.8 [Pa] an Schichtgrenze 8/9

Nr.	Material	DIN	μ1/μ2	μ
7	XPS/P 17-40mm, >750mm	000	μ1	100
8	2-k PUR Klebstoff		μ2	600
9	PVC Hart		μ2	50000

mailto: info@meas.ch - http://www.meas.ch

(c) ROWA-Soft GmbH (SNr01100A)

14.Sep 2016 15:27:42

Einzelbauteilnachweis (Wärmedurchgangs- und Dampfdiffusionsberechnung) gem. DIN 4108 und DIN EN ISO 6946

14.Sep 2016

Projekt Kurzbeschreibung: RVE-TK/dB 84mm

Bauvorhaben

Bearbeiter

Objektstandort Baujahr 2016

Straße/Hausnr. Plz/Ort

Gemarkung Flurstücknummer: -----

Hauseigentümer/Bauherr Name/Firma

Straße/Hausnr.

Plz/Ort Telefon / Fax

Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
Luftübergang Warmseite Rsi (1 PVC Hart 2 2-k PUR Klebstoff 3 XPS/P 17-40mm, >750mm 4 2-k PUR Klebstoff 5 Spezial-Schwerfolie 6 2-k PUR Klebstoff 7 TK/200 8 2-k PUR Klebstoff 9 XPS/P 17-40mm, >750mm 10 2-k PUR Klebstoff 11 PVC Hart Luftübergang Kaltseite Rse 0.	0 0 0 0 0 0 0 0	1450.0 1400.0 30.0 1400.0 2400.0 1400.0 200.0 1400.0 1400.0 1450.0	2.00 0.20 22.00 0.20 4.00 0.20 26.00 0.20 28.00 0.20 2.00	0.200 0.032 0.200 0.200 0.200 0.043 0.200 0.032 0.200	0.001 0.687 0.001 0.020 0.001 0.605 0.001 0.875 0.001	200 / 600 80000 200 / 600 200 / 300 200 / 600	Warmseite Kaltseite
Dicke = 85.00 mm	FIGewicht	= 23.5 kg/	/m²	R = 2.2	2 m²K/W	U-W	/ert = 0.419 W/m²K

Kommentar zum Bauteil Schalldämmwert: 37dB.

Wärmedurchgangsberechnung

Berechnete Daten:

Wärmedurchlaßwiderstand R 2.22 [m²K/W] Wärmedurchgangswiderstand RT 2.39 [m²K/W]

Wärmedurchgangskoeffizient U-Wert 0.42 [W/m²K]

Entstehung von Oberflächenkondensat

Bei den derzeitigen Randbedingungen beträgt die rel. Luftfeuchte an der Oberfläche Warmseite:

55.3%

Bei gegebener Temperatur von 20.0 °C auf der Warmseite tritt Öberflächenkondensat ab:

90.3 % Raumluftfeuchte auf.

RVE-TK/dB 84mm 14.Sep 2016 15:27:42

Randbedingungen der Dampfdiffusion

Warmseite Kaltseite Tauperiode: Lufttemperatur 20.0 °C -10.0 °C relative Feuchte 50.0 % 80.0 % 1440 Stunden Dauer der Tauperiode Verdunstungsperiode: 12.0 °C 12.0 °C Lufttemperatur relative Feuchte 70.0 % 70.0 % Dauer der Verdunstungsperiode 2160 Stunden

Dachtemperatur ----- °C

das Bauteil wird als Wand berechnet.

Falluntersuchung nach DIN 4108 ergab: FALL B

Aufbau ist OK. Es verbleibt kein Wasser im Bauteil

Ausfallpunkt 370.400[m] (μ*d) 275.5[Pa] an Schichtgrenze 10/11

Nr.	Material	DIN	μ1/μ2	μ
-	2-k PUR Klebstoff PVC Hart	D D	μ1 μ2	200 50000

mailto: info@meas.ch - http://www.meas.ch

(c) ROWA-Soft GmbH (SNr01100A)

10.Dez 2016 08:05:16

Einzelbauteilnachweis (Wärmedurchgangs- und Dampfdiffusionsberechnung) gem. DIN 4108 und DIN EN ISO 6946

03.Feb 2015

Projekt Kurzbeschreibung: RVE-TK/200 88mm

Bauvorhaben :

Bearbeiter :

Objektstandort Baujahr 2015

Straße/Hausnr. :

Gemarkung : Flurstücknummer: ----

Hauseigentümer/Bauherr Name/Firma :

Straße/Hausnr. : Plz/Ort :

Telefon / Fax

Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
Luftübergang Warmseite Rsi (1 PVC Hart 2 2-k PUR Klebstoff 3 XPS/D-X DIN EN 13164 4 2-k PUR Klebstoff 5 TK/200 6 2-k PUR Klebstoff 7 XPS/D-X DIN EN 13164 8 2-k PUR Klebstoff 9 PVC Hart Luftübergang Kaltseite Rse 0.	D D D D D	1450.0 1400.0 30.0 1400.0 200.0 1400.0 30.0 1400.0 1450.0	0.20 26.00 0.20 50.00	0.200 0.029 0.200 0.043 0.200 0.029 0.200	0.001 0.276 0.001 0.605 0.001 1.724 0.001	200 / 600 200 / 300 200 / 600	Warmseite Kaltseite
Dicke = 88.80 mm	FlGewicht	t = 13.9 kg	/m²	R = 2.6	3 m²K/W	U-W	/ert = 0.357 W/m²K

Wärmedurchgangsberechnung

Berechnete Daten:

 $\begin{tabular}{lll} W\"{a}rmedurchlaßwiderstand R & 2.63 [m²K/W] \\ W\"{a}rmedurchgangswiderstand RT & 2.80 [m²K/W] \\ \end{tabular}$

Wärmedurchgangskoeffizient U-Wert 0.36 [W/m²K]

Entstehung von Oberflächenkondensat

Bei den derzeitigen Randbedingungen beträgt die rel. Luftfeuchte an der Oberfläche Warmseite:

54.5%

Bei gegebener Temperatur von 20.0 °C auf der Warmseite tritt Oberflächenkondensat ab:

91.7 % Raumluftfeuchte auf.

RVE-TK/200 88mm 10.Dez 2016 08:05:16

Randbedingungen der Dampfdiffusion

Warmseite Kaltseite Tauperiode: Lufttemperatur 20.0 °C -10.0 °C relative Feuchte 50.0 % 80.0 % 1440 Stunden Dauer der Tauperiode Verdunstungsperiode: 12.0 °C 12.0 °C Lufttemperatur relative Feuchte 70.0 % 70.0 % Dauer der Verdunstungsperiode 2160 Stunden

Dachtemperatur ----- °C

das Bauteil wird als Wand berechnet.

Falluntersuchung nach DIN 4108 ergab: FALL D

Aufbau ist OK. Es verbleibt kein Wasser im Bauteil

Ausfallpunkt Warmseite 51.120 [m] (μ *d) 273.4 [Pa] an Schichtgrenze 7/8 Ausfallpunkt Kaltseite 51.240 [m] (μ *d) 273.1 [Pa] an Schichtgrenze 8/9

Nr.	Material	DIN	μ1/μ2	μ
7	XPS/D-X DIN EN 13164	000	μ1	100
8	2-k PUR Klebstoff		μ2	600
9	PVC Hart		μ2	50000

mailto: info@meas.ch - http://www.meas.ch

(c) ROWA-Soft GmbH (SNr01100A)

10.Dez 2016 08:30:12

Einzelbauteilnachweis (Wärmedurchgangs- und Dampfdiffusionsberechnung) gem. DIN 4108 und DIN EN ISO 6946

14.Feb 2016

Projekt Kurzbeschreibung: RV-TK/dB 88mm

Bauvorhaben

Bearbeiter :

Objektstandort Baujahr 2016

Straße/Hausnr. :
Plz/Ort :
Gemarkung

Gemarkung : Flurstücknummer: ----

Hauseigentümer/Bauherr Name/Firma :

Straße/Hausnr. : Plz/Ort :

Plz/Ort : Telefon / Fax :

Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
Luftübergang Warmseite Rsi 1 PVC Hart 2 2-k PUR Klebstoff 3 XPS/D-X DIN EN 13164 4 2-k PUR Klebstoff 5 TK/200 6 2-k PUR Klebstoff 7 Spezial-Schwerfolie 8 2-k PUR Klebstoff 9 XPS/D-X DIN EN 13164 10 2-k PUR Klebstoff 11 PVC Hart Luftübergang Kaltseite Rse 0	D D D D D D D D D D	1450.0 1400.0 30.0 1400.0 200.0 1400.0 2400.0 1400.0 1400.0 1450.0	2.00 0.20 8.00 0.20 26.00 0.20 4.00 0.20 46.00 0.20 2.00	0.200 0.029 0.200 0.043 0.200 0.200 0.200 0.029 0.200	0.001 0.276 0.001 0.605 0.001 0.020 0.001 1.586 0.001	200 / 600 200 / 300 200 / 600 80000 200 / 600	Warmseite Kaltseite
Dicke = 89.00 mm FIGewicht		= 23.6 kg	/m²	R = 2.5	2 m²K/W	U-W	/ert = 0.372 W/m²K

Wärmedurchgangsberechnung

Berechnete Daten:

 $\begin{tabular}{lll} W\"{a}rmedurchlaßwiderstand R & 2.52 [m²K/W] \\ W\"{a}rmedurchgangswiderstand RT & 2.69 [m²K/W] \\ \end{tabular}$

Wärmedurchgangskoeffizient U-Wert 0.37 [W/m²K]

Entstehung von Oberflächenkondensat

Bei den derzeitigen Randbedingungen beträgt die rel. Luftfeuchte an der Oberfläche Warmseite:

54.7%

Bei gegebener Temperatur von 20.0 °C auf der Warmseite tritt Oberflächenkondensat ab:

91.4 % Raumluftfeuchte auf.

RV-TK/dB 88mm 10.Dez 2016 08:30:12

Randbedingungen der Dampfdiffusion

Warmseite Kaltseite Tauperiode: Lufttemperatur 20.0 °C -10.0 °C relative Feuchte 50.0 % 80.0 % 1440 Stunden Dauer der Tauperiode Verdunstungsperiode: 12.0 °C 12.0 °C Lufttemperatur relative Feuchte 70.0 % 70.0 % Dauer der Verdunstungsperiode 2160 Stunden

Dachtemperatur ----- °C

das Bauteil wird als Wand berechnet.

Falluntersuchung nach DIN 4108 ergab: FALL B

Aufbau ist OK. Es verbleibt kein Wasser im Bauteil

Ausfallpunkt 370.800[m] (μ*d) 273.7[Pa] an Schichtgrenze 10/11

Nr.	Material	DIN	μ1/μ2	μ
10	2-k PUR Klebstoff	D	μ1	200
11	PVC Hart	D	μ2	50000

mailto: info@meas.ch - http://www.meas.ch

(c) ROWA-Soft GmbH (SNr01100A)

10.Dez 2016 08:05:59

Einzelbauteilnachweis (Wärmedurchgangs- und Dampfdiffusionsberechnung) gem. DIN 4108 und DIN EN ISO 6946

03.Feb 2015

Projekt Kurzbeschreibung: RVE-TK/200 90mm

Bauvorhaben :

Bearbeiter :

Objektstandort Baujahr 2015

Straße/Hausnr. :
Plz/Ort :

Gemarkung : Flurstücknummer: ----

Hauseigentümer/Bauherr Name/Firma :

Straße/Hausnr. :

Plz/Ort : Telefon / Fax :

Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
Luftübergang Warmseite Rsi 0.13 1 PVC Hart 2 2-k PUR Klebstoff 3 XPS/D-X DIN EN 13164 4 2-k PUR Klebstoff 5 TK/200 6 2-k PUR Klebstoff 7 XPS/D-X DIN EN 13164 8 2-k PUR Klebstoff 9 PVC Hart Luftübergang Kaltseite Rse 0.04	0 0 0 0 0 0 0	1450.0 1400.0 30.0 1400.0 200.0 1400.0 30.0 1400.0 1450.0	2.00 0.20 12.00 0.20 26.00 0.20 48.00 0.20 2.00	0.043 0.200 0.029	0.001 0.414 0.001 0.605 0.001 1.655 0.001	200 / 600 100 / 160	Warmseite Kaltseite
Dicke = 90.80 mm FIGewicht		= 13.9 kg/	/m²	R = 2.7	'0 m²K/W	U-W	/ert = 0.348 W/m²K

Wärmedurchgangsberechnung

Berechnete Daten:

 $\begin{array}{ll} \mbox{W\"{a}rmedurchla} \mbox{Swiderstand R} & 2.70 \ [\mbox{m}^2\mbox{K/W}] \\ \mbox{W\"{a}rmedurchgangswiderstand R} \mbox{T} & 2.87 \ [\mbox{m}^2\mbox{K/W}] \end{array}$

Wärmedurchgangskoeffizient U-Wert 0.35 [W/m²K]

Entstehung von Oberflächenkondensat

Bei den derzeitigen Randbedingungen beträgt die rel. Luftfeuchte an der Oberfläche Warmseite:

54.4%

Bei gegebener Temperatur von 20.0 °C auf der Warmseite tritt Oberflächenkondensat ab:

91.9 % Raumluftfeuchte auf.

RVE-TK/200 90mm 10.Dez 2016 08:05:59

Randbedingungen der Dampfdiffusion

Warmseite Kaltseite Tauperiode: 20.0 °C -10.0 °C Lufttemperatur relative Feuchte 50.0 % 80.0 % 1440 Stunden Dauer der Tauperiode Verdunstungsperiode: 12.0 °C 12.0 °C Lufttemperatur relative Feuchte 70.0 % 70.0 % Dauer der Verdunstungsperiode 2160 Stunden

Dachtemperatur ----- °C

das Bauteil wird als Wand berechnet.

Falluntersuchung nach DIN 4108 ergab: FALL D

Aufbau ist OK. Es verbleibt kein Wasser im Bauteil

Ausfallpunkt Warmseite 51.320 [m] (μ *d) 273.1 [Pa] an Schichtgrenze 7/8 Ausfallpunkt Kaltseite 51.440 [m] (μ *d) 272.8 [Pa] an Schichtgrenze 8/9

Nr.	Material	DIN	μ1/μ2	μ
8	XPS/D-X DIN EN 13164 2-k PUR Klebstoff PVC Hart	000	μ1 μ2 μ2	100 600 50000

mailto: info@meas.ch - http://www.meas.ch

(c) ROWA-Soft GmbH (SNr01100A)

10.Dez 2016 08:31:21

Einzelbauteilnachweis (Wärmedurchgangs- und Dampfdiffusionsberechnung) gem. DIN 4108 und DIN EN ISO 6946

14.Feb 2016

Projekt Kurzbeschreibung: RV-TK/dB 90mm

Bauvorhaben

Bearbeiter :

Objektstandort Baujahr 2016

Straße/Hausnr. :
Plz/Ort :
Gemarkung

Gemarkung : Flurstücknummer: ----

Hauseigentümer/Bauherr Name/Firma :

Straße/Hausnr. : Plz/Ort :

Telefon / Fax

Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
Luftübergang Warmseite Rsi 0.1 PVC Hart 2 2-k PUR Klebstoff 3 XPS/D-X DIN EN 13164 4 2-k PUR Klebstoff 5 TK/200 6 2-k PUR Klebstoff 7 Spezial-Schwerfolie 8 2-k PUR Klebstoff 9 XPS/D-X DIN EN 13164 10 2-k PUR Klebstoff 11 PVC Hart Luftübergang Kaltseite Rse 0.04	D D D D D D D D	1450.0 1400.0 30.0 1400.0 200.0 1400.0 2400.0 1400.0 1400.0 1450.0	12.00 0.20 26.00 0.20 4.00 0.20 44.00 0.20	0.200 0.029 0.200 0.043 0.200 0.200 0.200 0.029 0.200	0.001 0.414 0.001 0.605 0.001 0.020 0.001 1.517 0.001	100 / 160 200 / 600 200 / 300 200 / 600 80000 200 / 600 100 / 160	Warmseite Kaltseite Kaltseite
Dicke = 91.00 mm	FlGewicht	= 23.7 kg/	/m²	R = 2.5	59 m²K/W	U-W	/ert = 0.363 W/m ² K

Wärmedurchgangsberechnung

Berechnete Daten:

 $\begin{tabular}{lll} W\"{a}rmedurchlaßwiderstand R & 2.59 [m²K/W] \\ W\"{a}rmedurchgangswiderstand RT & 2.76 [m²K/W] \\ \end{tabular}$

Wärmedurchgangskoeffizient U-Wert 0.36 [W/m²K]

Entstehung von Oberflächenkondensat

Bei den derzeitigen Randbedingungen beträgt die rel. Luftfeuchte an der Oberfläche Warmseite:

54.6%

Bei gegebener Temperatur von 20.0 °C auf der Warmseite tritt Oberflächenkondensat ab:

91.6 % Raumluftfeuchte auf.

RV-TK/dB 90mm 10.Dez 2016 08:31:21

Randbedingungen der Dampfdiffusion

Warmseite Kaltseite Tauperiode: 20.0 °C -10.0 °C Lufttemperatur relative Feuchte 50.0 % 80.0 % 1440 Stunden Dauer der Tauperiode Verdunstungsperiode: 12.0 °C 12.0 °C Lufttemperatur relative Feuchte 70.0 % 70.0 %

Dauer der Verdunstungsperiode 2160 Stunden

Dachtemperatur ----- °C

das Bauteil wird als Wand berechnet.

Falluntersuchung nach DIN 4108 ergab: FALL C

Tauwasser in der Tauperiode: (1440h) $0.001+0.002 = 0.002 \text{ kg/m}^2$ mögliche Verdunstungsmenge: (2160h) $0.001+0.002 = 0.002 \text{ kg/m}^2$ verbleibende Restmenge 0.000 kg/m^2

Aufbau ist OK. Es verbleibt kein Wasser im Bauteil

Ausfallpunkt Warmseite 46.520 [m] (μ *d) 1025.9 [Pa] an Schichtgrenze 6/7 Ausfallpunkt Kaltseite 46.520 [m] (μ *d) 273.4 [Pa] an Schichtgrenze 10/11

Nr.	Material	DIN	μ1/μ2	μ
6	2-k PUR Klebstoff	0000	μ1	200
7	Spezial-Schwerfolie		μ1	80000
10	2-k PUR Klebstoff		μ2	600
11	PVC Hart		μ2	50000