mailto: info@meas.ch - http://www.meas.ch

(c) ROWA-Soft GmbH (SNr01100A)

28.Jan 2014 17:58:27

Einzelbauteilnachweis (Wärmedurchgangs- und Dampfdiffusionsberechnung) gem. DIN 4108 und DIN EN ISO 6946

28. Jan 2014

Projekt Kurzbeschreibung: RV/MDF 54mm

Bauvorhaben :

Bearbeiter :

Objektstandort Baujahr 2014

Straße/Hausnr. :

Gemarkung : Flurstücknummer: ----

Hauseigentümer/Bauherr Name/Firma : Straße/Hausnr. : Plz/Ort : Telefon / Fax :

Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	WWWWWW
Luftübergang Warmseite Rsi 1 MDF 2 2-k PUR Klebstoff 3 XPS/D-X DIN EN 13164 4 2-k PUR Klebstoff 5 MDF Luftübergang Kaltseite Rse 0	D D D D	800.0 1400.0 30.0 1400.0 800.0	10.00 0.20 34.00 0.20 10.00	0.200 0.029 0.200	0.001 1.172 0.001	200 / 600 100 / 160 200 / 600	Warnseite Minimummimmimmimmimmimmimmimmimmimmimmimmim
Dicke = 54.40 mm	FIGewicht	= 17.6 kg	/m²	R = 1.29 m ² K/W			/ert = 0.684 W/m²K

Kommentar zum Bauteil

Hinweis: Umlaufend Fichte-Einleimer.

Wärmedurchgangsberechnung

Berechnete Daten:

Wärmedurchlaßwiderstand R 1.29 [m²K/W] Wärmedurchgangswiderstand RT 1.46 [m²K/W]

Wärmedurchgangskoeffizient U-Wert 0.68 [W/m²K]

Entstehung von Oberflächenkondensat

Bei den derzeitigen Randbedingungen beträgt die rel. Luftfeuchte an der Oberfläche Warmseite:

Luftfeuchte an der Oberfläche Warmseite: 59.1%

Bei gegebener Temperatur von 20.0 °C auf der Warmseite

tritt Oberflächenkondensat ab: 84.7 % Raumluftfeuchte auf.

Randbedingungen der Dampfdiffusion

Warmseite Kaltseite Tauperiode:

Luftlemperatur20.0 °C-10.0 °Crelative Feuchte50.0 %80.0 %Dauer der Tauperiode1440 Stunden

RV/MDF 54mm 28.Jan 2014 17:58:27

Verdunstungsperiode:

 Lufttemperatur
 12.0 °C
 12.0 °C

 relative Feuchte
 70.0 %
 70.0 %

Dauer der Verdunstungsperiode 2160 Stunden

Dachtemperatur ----- °C

das Bauteil wird als Wand berechnet.

Falluntersuchung nach DIN 4108 ergab: FALL D

Tauwasser in der Tauperiode: (1440h) 0.013 kg/m² mögliche Verdunstungsmenge: (2160h) 0.023 kg/m² verbleibende Restmenge 0.000 kg/m²

Aufbau ist OK. Es verbleibt kein Wasser im Bauteil

Ausfallpunkt Warmseite 53.440 [m] (μ *d) 311.3 [Pa] an Schichtgrenze 3/4 Ausfallpunkt Kaltseite 53.560 [m] (μ *d) 310.7 [Pa] an Schichtgrenze 4/5

Nr.	Material	DIN	μ1/μ2	μ
	XPS/D-X DIN EN 13164	D	μ1	100
	2-k PUR Klebstoff	D	μ2	600
	MDF	D	μ1	5000

mailto: info@meas.ch - http://www.meas.ch

(c) ROWA-Soft GmbH (SNr01100A)

28.Jan 2014 17:59:57

Einzelbauteilnachweis (Wärmedurchgangs- und Dampfdiffusionsberechnung) gem. DIN 4108 und DIN EN ISO 6946

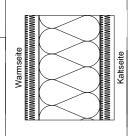
28. Jan 2014

Projekt Kurzbeschreibung: RV/MDF 64mm

Bauvorhaben

Bearbeiter

Objektstandort Baujahr 2014


Straße/Hausnr. Plz/Ort

Gemarkung Flurstücknummer: -----

Hauseigentümer/Bauherr Name/Firma Straße/Hausnr. Plz/Ort

Telefon / Fax

Material	Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.
Luftübergang Warmseite Rsi 0.13	800.0	10.00	0.170	0.059	5000
2 2-k PUR Klebstoff D	1400.0				
3 XPS/D-X DIN EN 13164 D	30.0	44.00	0.029	1.517	100 / 160
4 2-k PUR Klebstoff D	1400.0	0.20	0.200	0.001	200 / 600
5 MDF D	800.0	10.00	0.170	0.059	5000

Dicke = 64.40 mm FI.-Gewicht = 17.9 kg/m² $R = 1.64 \text{ m}^2\text{K/W}$ $U-Wert = 0.553 W/m^2K$

Kommentar zum Bauteil

Hinweis: Umlaufend Fichte-Einleimer.

Luftübergang Kaltseite Rse 0.04

Wärmedurchgangsberechnung

Berechnete Daten:

Wärmedurchlaßwiderstand R 1.64 [m²K/W] Wärmedurchgangswiderstand RT 1.81 [m²K/W]

Wärmedurchgangskoeffizient U-Wert 0.55 [W/m2K]

Entstehung von Oberflächenkondensat

Bei den derzeitigen Randbedingungen beträgt die rel. Luftfeuchte an der Oberfläche Warmseite:

57.2%

Bei gegebener Temperatur von 20.0 °C auf der Warmseite

tritt Oberflächenkondensat ab: 87.4 % Raumluftfeuchte auf.

Randbedingungen der Dampfdiffusion

Warmseite Kaltseite

Tauperiode: Lufttemperatur 20.0 °C -10.0 °C 50.0 % relative Feuchte 80.0 % Dauer der Tauperiode 1440 Stunden

MEAS Win Technique AG Burstriet 5 CH-9465 Salez Fon +41(0) 81 750 40 00 - Fax +41(0) 81 750 40 04

mailto: info@meas.ch - http://www.meas.ch

RV/MDF 64mm 28.Jan 2014 17:59:57

Verdunstungsperiode:

Lufttemperatur 12.0 °C 12.0 °C relative Feuchte 70.0 % 70.0 %

Dauer der Verdunstungsperiode 2160 Stunden

Dachtemperatur ----- °C

das Bauteil wird als Wand berechnet.

Falluntersuchung nach DIN 4108 ergab: FALL D

Tauwasser in der Tauperiode: (1440h) 0.014 kg/m² mögliche Verdunstungsmenge: (2160h) 0.023 kg/m² verbleibende Restmenge 0.000 kg/m²

Aufbau ist OK. Es verbleibt kein Wasser im Bauteil

Ausfallpunkt Warmseite 54.440 [m] (μ *d) 300.8 [Pa] an Schichtgrenze 3/4 Ausfallpunkt Kaltseite 54.560 [m] (μ *d) 300.4 [Pa] an Schichtgrenze 4/5

Nr.	Material	DIN	μ1/μ2	μ
	XPS/D-X DIN EN 13164	D	μ1	100
	2-k PUR Klebstoff	D	μ2	600
	MDF	D	μ1	5000

mailto: info@meas.ch - http://www.meas.ch

(c) ROWA-Soft GmbH (SNr01100A)

28.Jan 2014 18:00:52

Einzelbauteilnachweis (Wärmedurchgangs- und Dampfdiffusionsberechnung) gem. DIN 4108 und DIN EN ISO 6946

28. Jan 2014

Projekt Kurzbeschreibung: RV/MDF 68mm

Bauvorhaben

Bearbeiter

Objektstandort Baujahr 2014

Straße/Hausnr. Plz/Ort

Gemarkung Flurstücknummer: -----

Hauseigentümer/Bauherr Name/Firma Straße/Hausnr. Plz/Ort Telefon / Fax

Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	MANAMAN MANAMANA
Luftübergang Warmseite Rsi 1 MDF 2 2-k PUR Klebstoff 3 XPS/D-X DIN EN 13164 4 2-k PUR Klebstoff 5 MDF Luftübergang Kaltseite Rse	D D D D	800.0 1400.0 30.0 1400.0 800.0	0.20 48.00 0.20	0.200 0.029 0.200	0.001 1.655 0.001	5000 200 / 600 100 / 160 200 / 600 5000	Warmseite www.www.www.www.www.ww.ww. www.www.www
Dicke = 68.40 mm	Dicke = 68.40 mm FlGewicht = 18.0 kg/m ²		/m²	R = 1.77 m ² K/W			Vert = 0.514 W/m²K

Kommentar zum Bauteil

Hinweis: Umlaufend Fichte-Einleimer.

Wärmedurchgangsberechnung

Berechnete Daten:

Wärmedurchlaßwiderstand R 1.77 [m²K/W] Wärmedurchgangswiderstand RT 1.94 [m²K/W]

Wärmedurchgangskoeffizient U-Wert 0.51 [W/m2K]

Entstehung von Oberflächenkondensat

Bei den derzeitigen Randbedingungen beträgt die rel. Luftfeuchte an der Oberfläche Warmseite:

Bei gegebener Temperatur von 20.0 °C auf der Warmseite

tritt Oberflächenkondensat ab: 88.3 % Raumluftfeuchte auf.

56.7%

Randbedingungen der Dampfdiffusion

Warmseite Kaltseite Tauperiode:

Lufttemperatur 20.0 °C -10.0 °C 50.0 % 80.0 % relative Feuchte

Dauer der Tauperiode 1440 Stunden

RV/MDF 68mm 28.Jan 2014 18:00:52

Verdunstungsperiode:

 Lufttemperatur
 12.0 °C
 12.0 °C

 relative Feuchte
 70.0 %
 70.0 %

Dauer der Verdunstungsperiode 2160 Stunden

Dachtemperatur ----- °C

das Bauteil wird als Wand berechnet.

Falluntersuchung nach DIN 4108 ergab: FALL D

Tauwasser in der Tauperiode: (1440h) 0.014 kg/m² mögliche Verdunstungsmenge: (2160h) 0.023 kg/m² verbleibende Restmenge 0.000 kg/m²

Aufbau ist OK. Es verbleibt kein Wasser im Bauteil

Ausfallpunkt Warmseite 54.840 [m] (μ *d) 297.7 [Pa] an Schichtgrenze 3/4 Ausfallpunkt Kaltseite 54.960 [m] (μ *d) 297.3 [Pa] an Schichtgrenze 4/5

Nr.	Material	DIN	μ1/μ2	μ
	XPS/D-X DIN EN 13164	D	μ1	100
	2-k PUR Klebstoff	D	μ2	600
	MDF	D	μ1	5000

mailto: info@meas.ch - http://www.meas.ch

(c) ROWA-Soft GmbH (SNr01100A)

10.Mär 2014 12:37:06

Einzelbauteilnachweis (Wärmedurchgangs- und Dampfdiffusionsberechnung) gem. DIN 4108 und DIN EN ISO 6946

10.März 2014

Projekt Kurzbeschreibung: RV/MDF 78mm

Bauvorhaben

Bearbeiter

Objektstandort Baujahr 2014

Straße/Hausnr. Plz/Ort

Gemarkung Flurstücknummer: -----

Hauseigentümer/Bauherr Name/Firma Straße/Hausnr. Plz/Ort

Telefon / Fax

Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	MINIMAN MANAGEMENT AND
Luftübergang Warmseite Rsi 1 MDF 2 2-k PUR Klebstoff 3 XPS/D-X DIN EN 13164 4 2-k PUR Klebstoff 5 MDF Luftübergang Kaltseite Rse	D D D D	800.0 1400.0 30.0 1400.0 800.0	0.20 58.00 0.20	0.200 0.029 0.200	0.001 2.000 0.001	5000 200 / 600 100 / 160 200 / 600 5000	Warmseite Warmsmann Warmseite Warmsmann Warmsmann Warmsmann Warmsmann Warmsmann Warnseite Kaltseite
Dicke = 78.40 mm	FlGewicht	t = 18.3 kg/m²		R = 2.1	2 m²K/W	U-V	Vert = 0.437 W/m²K

Kommentar zum Bauteil

Hinweis: Umlaufend Fichte-Einleimer.

Wärmedurchgangsberechnung

Berechnete Daten:

Wärmedurchlaßwiderstand R 2.12 [m²K/W] Wärmedurchgangswiderstand RT 2.29 [m2K/W] Wärmedurchgangskoeffizient U-Wert 0.44 [W/m²K]

Entstehung von Oberflächenkondensat

Bei den derzeitigen Randbedingungen beträgt die rel.

Luftfeuchte an der Oberfläche Warmseite:

55.6%

Bei gegebener Temperatur von 20.0 °C auf der Warmseite

tritt Oberflächenkondensat ab:

89.9 % Raumluftfeuchte auf.

Randbedingungen der Dampfdiffusion

Warmseite Kaltseite Tauperiode: Lufttemperatur 20.0 °C -10.0 °C 50.0 %

relative Feuchte Dauer der Tauperiode 1440 Stunden 80.0 %

RV/MDF 78mm 10.Mär 2014 12:37:06

Verdunstungsperiode:

 Lufttemperatur
 12.0 °C
 12.0 °C

 relative Feuchte
 70.0 %
 70.0 %

Dauer der Verdunstungsperiode 2160 Stunden

Dachtemperatur ----- °C

das Bauteil wird als Wand berechnet.

Falluntersuchung nach DIN 4108 ergab: FALL D

Tauwasser in der Tauperiode: (1440h) 0.013 kg/m² mögliche Verdunstungsmenge: (2160h) 0.023 kg/m² verbleibende Restmenge 0.000 kg/m²

Aufbau ist OK. Es verbleibt kein Wasser im Bauteil

Ausfallpunkt Warmseite 55.840 [m] (μ *d) 291.7 [Pa] an Schichtgrenze 3/4 Ausfallpunkt Kaltseite 55.960 [m] (μ *d) 291.4 [Pa] an Schichtgrenze 4/5

Nr.	Material	DIN	μ1/μ2	μ
	XPS/D-X DIN EN 13164	D	μ1	100
	2-k PUR Klebstoff	D	μ2	600
	MDF	D	μ1	5000

mailto: info@meas.ch - http://www.meas.ch

(c) ROWA-Soft GmbH (SNr01100A)

28.Jan 2014 18:01:43

Einzelbauteilnachweis (Wärmedurchgangs- und Dampfdiffusionsberechnung) gem. DIN 4108 und DIN EN ISO 6946

28. Jan 2014

Projekt Kurzbeschreibung: RV/MDF 99mm

Bauvorhaben

Bearbeiter :

Objektstandort Baujahr 2014

Straße/Hausnr. :

Gemarkung : Flurstücknummer: ----

Hauseigentümer/Bauherr Name/Firma : Straße/Hausnr. : Plz/Ort : Telefon / Fax :

Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
Luftübergang Warmseite Rsi 1 MDF 2 2-k PUR Klebstoff 3 XPS/D-X DIN EN 13164 4 2-k PUR Klebstoff 5 MDF Luftübergang Kaltseite Rse	D D D D	800.0 1400.0 30.0 1400.0 800.0	0.20 79.00 0.20	0.200 0.029 0.200	0.001 2.724 0.001	5000 200 / 600 100 / 160 200 / 600 5000	Warmseite
Dicke = 99.40 mm	cke = 99.40 mm FlGewicht = 18.9 kg/m²		/m²	R = 2.84 m ² K/W			Vert = 0.332 W/m²K

Kommentar zum Bauteil

Hinweis: Umlaufend Fichte-Einleimer.

Wärmedurchgangsberechnung

Berechnete Daten:

 Wärmedurchlaßwiderstand R
 2.84 [m²K/W]

 Wärmedurchgangswiderstand RT
 3.01 [m²K/W]

 Wärmedurchgangskoeffizient U-Wert
 0.33 [W/m²K]

Entstehung von Oberflächenkondensat

Bei den derzeitigen Randbedingungen beträgt die rel. Luftfeuchte an der Oberfläche Warmseite:

Luttleuchte an der Obernache warmseite:

Bei gegebener Temperatur von 20.0 °C auf der Warmseite

tritt Oberflächenkondensat ab: 92.3 % Raumluftfeuchte auf.

54.2%

Randbedingungen der Dampfdiffusion

 Warmseite
 Kaltseite

 Tauperiode:
 20.0 °C
 -10.0 °C

 relative Feuchte
 50.0 %
 80.0 %

Dauer der Tauperiode 1440 Stunden

RV/MDF 99mm 28.Jan 2014 18:01:43

Verdunstungsperiode:

 Lufttemperatur
 12.0 °C
 12.0 °C

 relative Feuchte
 70.0 %
 70.0 %

Dauer der Verdunstungsperiode 2160 Stunden

Dachtemperatur ----- °C

das Bauteil wird als Wand berechnet.

Falluntersuchung nach DIN 4108 ergab: FALL D

Tauwasser in der Tauperiode: (1440h) 0.013 kg/m² mögliche Verdunstungsmenge: (2160h) 0.023 kg/m² verbleibende Restmenge 0.000 kg/m²

Aufbau ist OK. Es verbleibt kein Wasser im Bauteil

Ausfallpunkt Warmseite 57.940 [m] (μ *d) 283.7 [Pa] an Schichtgrenze 3/4 Ausfallpunkt Kaltseite 58.060 [m] (μ *d) 283.5 [Pa] an Schichtgrenze 4/5

Nr.	Material	DIN	μ1/μ2	μ
3	XPS/D-X DIN EN 13164	D	μ1	100
4	2-k PUR Klebstoff	D	μ2	600
5	MDF	D	μ1	5000